通过3B和3C告诉你什么是工业大数据?

相信大家一听到大数据,首先会想到在互联网和商业环境中,利用大量的行为数据来分析用户行为和预测市场趋势等应用。现在对大数据最为流行的定义来自于维克托·迈尔-舍恩伯格和肯尼斯·克耶编写的《大数据时代》中提出的4V特性,即Volume(数据量大)、Velocity(流动速度快)、Veracity(准确性难把握)、和Variety(来源多样性)。这个定义是针对互联网和社会环境中的大数据,从数据工程的技术挑战方面所提出的,而工业大数据的挑战和目的则要通过“3B”“3C”来理解:


工业大数据应用的“3B”挑战:

Bad Quality:在工业大数据中,数据质量问题一直是许多企业所面临的挑战。这主要受制于工业环境中数据获取手段的限制,包括传感器、数采硬件模块、通信协议、和组态软件等多个技术限制。对数据质量的管理技术是一个企业必须要下的硬功夫。

Broken:工业对于数据的要求并不仅在于量的大小,更在于数据的全面性。在利用数据建模的手段解决某一个问题时,需要获取与被分析对象相关的全面参数,而一些关键参数的缺失会使分析过程碎片化。举例而言,当分析地铁发动机性能时需要温度、空气密度、功率等多个参数,而当其中任意一个参数缺失时都无法建立完整的性能评估和预测模型。因此对于企业来说,在进行数据收集前要对分析的对象和目的有清楚的规划,这样才能够确保所获取数据的全面性,以免斥巨资积累了大量数据后发现并不能解决所关心的问题。

Background :除了对数据所反映出来的表面统计特征进行分析以外,还应该关注数据中所隐藏的背景相关性。对这些隐藏在表面以下的相关性进行分析和挖掘时,需要一些具有参考性的数据进行对照,也就是数据科学中所称的“贴标签”过程。这一类数据包括工况设定、维护记录、任务信息等,虽然数据的量不大,但在数据分析中却起到至关重要的作用。


工业大数据分析的“3C”目的:

Comparison(比较性):从比较过程中获取洞察,既包括比较相似性,也包括比较差异性。比较的维度既可以是在时间维度上与自身状态的比较,也可以是在集群维度上与其他个体的比较。这种比较分析能够帮助我们将庞大的个体信息进行分类,为接下来寻找相似中的普适性规律和差异中的因果关系奠定基础。

Correlation (相关性):如果说物联网是可见世界的连接,那么所连接对象之间的相关性就是不可见世界的连接。对相关性的挖掘是形成记忆和知识的基础,简单的将信息存储下来并不能称之为记忆,通过信息之间的关联性对信息进行管理和启发式的联想才是记忆的本质。相关性同时也促进了人脑在管理和调用信息的效率,我们在回想起一个画面或是情节的时候,往往并不是去回忆每一个细节,而是有一个如线头一样的线索,你去牵它一下就能够引出整个场景。这样的类似记忆式的信息管理方式运用在工业智能中,就是一种更加灵活高效的数据管理方式。

Consequence (因果性):数据分析的重要目的是进行决策支持,在制定一个特定的决策时,其所带来的结果和影响应该被同等地分析和预测。这是以往的控制系统所不具备的特性,也是智能化的本质。工业系统中的大部分活动都具有很强的目的性,就是把目标精度最大化,把破坏度最小化的“结果管理”。结果管理的基础是预测,例如在现在的制造系统中,如果我们可以预测到设备的衰退对质量的影响,以及对下一个工序质量的影响,就可以在制造过程中对质量风险进行补偿和管理,制造系统的弹性和坚韧性就会增加。

总结而言,互联网和商业大数据与工业大数据在技术挑战、数据属性、和分析目的等方面有很多区别,这也决定了两者技术手段的不同。


虽然互联网大数据与工业大数据的核心问题与技术路径不同,但并不意味着两者是格格不入的。相反,将互联网大数据与工业大数据相整合,能够相得益彰产生更大的价值。举例而言,制造系统正在改变过去生产驱动销售的“Push”模式和销售驱动生产的“Pull”模式,虽然已经具备满足不同订单需求的“柔性”生产模式,但依然无法改变对市场应激式的生产模式。

未来的智能制造系统将以数据来驱动,体现在设计过程的数据化制造系统驱动的数据化生产资源管理的数据化等方式。但是这些都还只看到了制造系统本身,而忽略了这些数据化的源头应该是对市场和客户的数据化。利用商业大数据对市场进行预测、绘制客户需求画像、和分析供应状态实时评估等方式,能够从本质上将制造系统从应激式转变成为预测型的生产模式。


以数据为核心使产品发挥最大的能力,归根结底是利用数据建模实现对状态、环境和任务的精确评估,对管理和控制活动进行实时的决策优化,并协同和调度相关产品高效率运行的过程。

制造系统中的问题有 “ 可见” 和“ 不可见”之分,我们对待这些问题的方式既可以在问题发生后去解决,也可以在问题发生前去避免。生产系统中存在的“不可见”问题包括设备性能的衰退、精度的缺失、易耗件的磨损、和资源的浪费等,可见的问题往往是这些不可见因素积累到一定程度所引起的,比如设备的衰退最终导致停机、精度的缺失最终导致质量偏差等。就如同冰山一样,可见的问题仅仅是冰山一角,而隐性的问题则是隐藏在冰山下面的恶魔。通过大数据对“不可见”问题获得深刻的洞察,是实现无忧虑制造环境的基础,也是智能制造的本质。

通过分析数据,预测需求、预测制造、利用数据去整合产业链和价值链,这就是工业大数据的思维。工业互联网是一场在不可见世界中的战争,而工业数据分析的竞争力则是连接可见与不可见世界的桥梁。


数据本身不会说话,也并不会直接创造价值,真正为企业带来价值的是数据分析和挖掘之后产生的洞察和行动的价值,是数据经过实时分析后及时地流向决策链的各个环节,是让数据成为面向客户创值服务的媒介和依据。

而睿帆科技作为业内领先一站式大数据平台解决方案供应商,一直致力于解决大数据技术门槛高实施周期长技术人员缺乏等问题,立足于全国市场,紧密结合各行业特点,深挖客户应用,依托强大的研发能力,融合世界前沿的技术理念,快速响应客户的变化需求,为企业及政府客户提供先进、可靠、安全、高质量、高效率、易扩展的应用,帮助客户降低应用大数据技术的成本和周期,提高数据资产转化为客户价值的能力。


工业大数据的目的并不是追求数据量的庞大,而是通过系统式地数据收集和分析手段实现价值的最大化。所以推动工业价值转型和智能制造的并不是大数据本身,而是大数据分析技术所带来的洞察,行动的准确性与速度。

在新制造革命的转型中,更加有效地积累和利用数据资源与知识的传承,决定了能否在新竞争环境中脱颖而出。工业大数据定义了制造价值的新主张,这个价值的应用既可以外向,也可以是内向。内向是利用大数据去解决和避免制造系统中的“不可见”问题,实现无忧的制造环境外向是利用大数据在产品的使用过程向用户提供智能增值服务,实现制造价值的延续

这两者对于中国制造而言,一方面是解决制造“大而不强”的挑战,另一方面是改善制造附加值较低的瓶颈。中国应该利用好使用数据的资源,不断提升企业对制造的理解和知识积累速度,才能弥补中国在装备制造和核心零部件等方面的弱势,逐步弥补这些弱势领域造成的短板,让世界看到中国在工业大数据中创知和创值的成功经验。